Имитационная
. Предположим, есть абсолютно неавтоматизированное предприятие, оно состоит из отделов, сотрудники обмениваются бумажками, считают на калькуляторах и т.п. Вот мы решили автоматизировать это предприятие исходя из имитационной концепции. Для этого мы выясняем, что делает каждый отдел, и, таким образом, получаем некоторый набор задач по количеству отделов, которые и решаем. Хочу четко обозначить, что мы понимаем под словом "отдел". Совсем не обязательно, что это будет именно ОТДЕЛ, в том понимании, как это принято на предприятиях. Это могут быть и несколько отделов, и группы людей в разных отделах и подразделениях. Важно, чтобы была возможность сгруппировать задачу таким образом, чтобы при автоматизации предприятия она разбивалась на подзадачи. К примеру, если в предприятии 10 складов, то пишется 1 модуль под названием "Склад", ибо он решает задачу складского учета.
Как такая автоматизация влияет на работу предприятия?
Конечно, в определенной степени энтропия системы уменьшается. В первую очередь, за счет того, что компьютер - не человек, ему все равно, сколько цифр сложить (это не совсем так, но предположим, что у нас очень быстрый и стабильно работающий компьютер) и как долго хранить. Но посмотрим, как ведет себя информация в имитационной концепции: отделы не могут работать обособленно, и если раньше они обменивались бумажками, то теперь эту роль взяли на себя информационные потоки между модулями системы. По сути, энтропия перераспределилась в эти потоки. Если они хорошо налажены, система работает хорошо, энтропия уменьшилась, информации достаточно, чтобы принять правильное решение. И тем не менее...
Напоминаю, речь идет о человеческой системе. Причем это открытая система, которая завязана на состоянии рынка, поставщиках, клиентах, законодательстве, конкурентах и т.п. При таком количестве воздействий система не может быть не изменяться. Это значит, что налаженный вчера поток данных между модулями системы сегодня уже будет недостаточен и приведет не к уменьшению, а увеличению энтропии. Этот поток и так-то очень трудно наладить, всем знакома проблема со слабыми связями модулей ERP-систем, вплоть до того, что данные из одного модуля заносятся в другой руками. Так к чему может привести постоянное изменение информационных потоков?! Как видим, в имитационной концепции уменьшение энтропии на начальном этапе проектирования привело к её перераспределению в информационные потоки между модулями и к дальнейшей нестабильной работе системы.
Почему же очевидный на первый взгляд способ решать большую и сложную задачу по частям не гарантирует стабильной работы системы?
Чтобы ответить на этот вопрос, давайте рассмотрим предпочтительную и более современную аддитивную концепцию построения ERP систем.
Поставим задачу:
Необходимо, чтобы система "человек - компьютер" функционировала с минимальной энтропией.
Энтропия на уровне компьютера.
Компьютер обладает недостижимой для человека скоростью работы с данными, не ошибается, не забывает, делает в точности то, что ему велит программа, а это значит, что энтропия на стороне компьютера минимальна (разумеется, если все корректно работает). В общем, компьютер - это инструмент и ему все равно, какие данные с чем складывать, какие делать выводы, как и что анализировать. Для него существуют только инструкции, которые он выполняет. И если для человека выполнять разные по характеру виды работы- проблема, то компьютеру все равно, была бы соответствующая программа. Из всего этого делаем вывод - компьютер требует принципиально иного к себе подхода, чем человек, для компьютера разбивать задачу на подзадачи не нужно, компьютер - это инструмент, он дополняет работу человека.
Энтропия на уровне человека.
Т.к. мы уже определили, что на уровне компьютера энтропия минимальна, то ответ однозначен - источником роста энтропии в системе является человек! Это он ошибается, не может быстро переключаться с одного дела на другое и плохо воспринимает более 9-ти объектов одновременно.
Как свести к минимуму человеческие ошибки (уменьшить энтропию системы)?
Во-первых, количество возможных решений должно быть максимально ограничено.
Давайте сравним количество информации, которую должен обработать продавец чтобы отгрузить товар с одного склада и с нескольких складов. В первом случае - это слежение за остатком на одном складе и доставка с одного склада клиенту, тут все просто и понятно. При отгрузке же с нескольких складов дополнительно возникает масса вопросов: как будет доставляться товар клиенту, с каждого склада отдельными машинами или сперва формировать заявку на каком-то одном складе, а потом доставлять? Одинаковы ли условия отгрузки на всех складах (возможно, один склад отгружает упаковками, другой штуками)? Как поступить, если большая часть товара для клиента есть на одном складе, а то, чего не хватило и есть на другом складе, стоит 100 руб. и есть ли смысл собирать и доставлять оставшееся количество товара через весь город и т.д. и т.п.? Можно быть уверенным, что количество ошибок существенно возрастет, и руководство предприятия должно решить для себя, что целесообразнее: увеличить продажи (что далеко не факт!) за счет резкого увеличения ошибок в системе (энтропия возросла!) или стабильность системы важнее? Нужно отдавать себе отчет, что каждое человеческое движение - это ошибки и количество возможных решений необходимо ограничивать.
Во-вторых, совершенно необходимо, чтобы принимая решение человек имел ПОЛНУЮ и АБСОЛЮТНО ДОСТОВЕРНУЮ информацию, которая ему необходима (помните, в имитационной модели именно неполные информационные потоки между модулями разваливали систему) и в наиболее удобном для него виде. И только общее информационное пространство способно предоставить такие гарантии.
Приведем еще один пример, когда маленькая задержка при передаче данных может обернуться бедой. Пусть в 1000 бухгалтерия распечатывает для своих продавцов дебиторскую задолженность по клиентам. После этого приходит клиент, который перечислил предоплату 100 тыс.р., и это отражено в бухгалтерском документе. Продавец, естественно, отгружает предоплаченный товар. Всё, казалось, хорошо. Но покупатель оказался жуликом, и через час идет к другому продавцу и получает товар еще на 100 тыс., т.к. продавец видит ту же распечатку, что и первый. Затем покупатель идет дальше - к третьему, четвертому и т.д. продавцам. В этом случае убытки могут оказаться весьма серьезными. Вот к чему может привести запаздывание информации всего на 1 день!